Large-Scale Optimization Algorithms for Sparse Conditional Gaussian Graphical Models

نویسندگان

  • Calvin McCarter
  • Seyoung Kim
چکیده

This paper addresses the problem of scalable optimization for l1-regularized conditional Gaussian graphical models. Conditional Gaussian graphical models generalize the well-known Gaussian graphical models to conditional distributions to model the output network influenced by conditioning input variables. While highly scalable optimization methods exist for sparse Gaussian graphical model estimation, state-ofthe-art methods for conditional Gaussian graphical models are not efficient enough and more importantly, fail due to memory constraints for very large problems. In this paper, we propose a new optimization procedure based on a Newton method that efficiently iterates over two sub-problems, leading to drastic improvement in computation time compared to the previous methods. We then extend our method to scale to large problems under memory constraints, using block coordinate descent to limit memory usage while achieving fast convergence. Using synthetic and genomic data, we show that our methods can solve problems with millions of variables and tens of billions of parameters to high accuracy on a single machine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum likelihood estimation of Gaussian graphical models: Numerical implementation and topology selection

We describe algorithms for maximum likelihood estimation of Gaussian graphical models with conditional independence constraints. It is well-known that this problem can be formulated as an unconstrained convex optimization problem, and that it has a closed-form solution if the underlying graph is chordal. The focus of this paper is on numerical algorithms for large problems with non-chordal grap...

متن کامل

Topology Selection in Graphical Models of Autoregressive Processes

An algorithm is presented for topology selection in graphical models of autoregressive Gaussian time series. The graph topology of the model represents the sparsity pattern of the inverse spectrum of the time series and characterizes conditional independence relations between the variables. The method proposed in the paper is based on an l1-type nonsmooth regularization of the conditional maxim...

متن کامل

Bayesian Learning in Sparse Graphical Factor Models via Annealed Entropy

We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We d...

متن کامل

Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing

We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We d...

متن کامل

On Sparse Gaussian Chain Graph Models

In this paper, we address the problem of learning the structure of Gaussian chain graph models in a high-dimensional space. Chain graph models are generalizations of undirected and directed graphical models that contain a mixed set of directed and undirected edges. While the problem of sparse structure learning has been studied extensively for Gaussian graphical models and more recently for con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016